A Case Study of the Summertime Great Plains Low Level Jet

1988 ◽  
Vol 116 (1) ◽  
pp. 94-105 ◽  
Author(s):  
Thomas R. Parish ◽  
Alfred R. Rodi ◽  
Richard D. Clark
Keyword(s):  
2017 ◽  
Vol 51 (4) ◽  
pp. 1537-1558 ◽  
Author(s):  
James F. Danco ◽  
Elinor R. Martin

2018 ◽  
Author(s):  
Iago Algarra ◽  
Jorge Eiras-Barca ◽  
Gonzalo Miguez-Macho ◽  
Raquel Nieto ◽  
Luis Gimeno

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ying Tang ◽  
Julie Winkler ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Dana Doubler ◽  
...  

2018 ◽  
Vol 33 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
David E. Jahn ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.


2017 ◽  
Author(s):  
Bing Pu ◽  
Paul Ginoux

Abstract. High concentration of dust particles can cause respiratory problems and increase non-accidental mortality. Studies found fine dust (with aerodynamic diameter less than 2.5 microns) is an important component of the total PM2.5 mass in the western and central U.S. in spring and summer and has positive trends. This work examines factors influencing long-term variations of fine dust concentration in the U.S. using station data from the Interagency Monitoring Protected Visual Environments (IMPROVE) network during 1990–2015. The variations of the fine dust concentration can be largely explained by the variations of precipitation, surface bareness, and 10 m wind speed. Moreover, including convective parameters such as convective inhibition (CIN) and convective available potential energy (CAPE) better explains the variations and trends over the Great Plains from spring to fall. While the positive trend of fine dust concentration in the Southwest in spring is associated with precipitation deficit, the increasing of fine dust over the central Great Plains in summer is largely associated with an enhancing of CIN and a weakening of CAPE, which are related to increased atmospheric stability due to surface drying and lower troposphere warming. The positive trend of the Great Plains low-level jet also contributes to the increasing of fine dust concentration in the central Great Plains in summer via its connections with surface winds and CIN. Summer dusty days in the central Great Plains are usually associated with a westward extension of the North Atlantic subtropical high that intensifies the Great Plains low-level jet and also results in a stable atmosphere with subsidence and reduced precipitation.


2016 ◽  
Vol 31 (5) ◽  
pp. 1491-1510 ◽  
Author(s):  
Brian J. Squitieri ◽  
William A. Gallus

Abstract The classic Great Plains southerly low-level jet (LLJ) is a primary factor in sustaining nocturnal convection. This study compares convection-allowing WRF forecasts of LLJ events associated with MCSs in strongly and weakly forced synoptic environments. The depth of the LLJs and magnitude, altitude, and times of the LLJ peak wind were evaluated in observations and WRF forecasts for 31 cases as well as for case subsets of strongly and weakly forced synoptic regimes. LLJs in strongly forced regimes were stronger, deeper, and peaked at higher altitudes and at earlier times compared to weakly forced cases. Mean error MCS-centered composites of WRF forecasts versus RUC analyses were derived at MCS initiation time for the LLJ atmospheric water vapor mixing ratio, LLJ total wind magnitude, convergence, most unstable convective available potential energy (MUCAPE), and most unstable convective inhibition (MUCIN). In most configurations, simulated MCSs in strongly and weakly forced regimes initiated to the north and east of observations, generally in a region where LLJ moisture, MUCAPE, and MUCIN fields were forecast well, with larger errors outside this region. However, WSM6 simulations for strongly forced cases showed a southward displacement in MCS initiation, where a combination of ambient environmental factors and microphysics impacts may simultaneously play a role in the location of forecast MCS initiation. Strongly forced observed and simulated MCSs initiated west of the LLJ axis and moved eastward into the LLJ, while observed and simulated MCSs in weakly forced environments traversed the termini of the LLJ. A northward bias existed for simulated MCS initiation and LLJ termini for weakly forced regimes.


2017 ◽  
Vol 32 (4) ◽  
pp. 1613-1635 ◽  
Author(s):  
Sean Stelten ◽  
William A. Gallus

Abstract The prediction of convective initiation remains a challenge to forecasters in the Great Plains, especially for elevated events at night. This study examines a subset of 287 likely elevated nocturnal convective initiation events that occurred with little or no direct influence from surface boundaries or preexisting convection over a 4-month period of May–August during the summer of 2015. Events were first classified into one of four types based on apparent formation mechanisms and location relative to any low-level jet. A climatology of each of the four types was performed focusing on general spatial tendencies over a large Great Plains domain and initiation timing trends. Simulations from five convection-allowing models available during the Plains Elevated Convection At Night (PECAN) field campaign, along with four versions of a 4-km Weather Research and Forecasting (WRF) Model, were used to examine the predictability of these types of convective initiation. A dual-peak pattern for initiation timing was revealed, with one peak near 0400 UTC and another around 0700 UTC. The times and prominence of each peak shifted depending on the region analyzed. Positive thermal advection by the geostrophic wind was present in the majority of events for three types but not for the type occurring without a low-level jet. Models were more deficient with location than timing for the five PECAN models, with the four 4-km WRF Models showing similar location errors and problems with initiating convection at a lower altitude than observed.


2020 ◽  
Author(s):  
D. Alex Burrows ◽  
Craig Ferguson ◽  
Shubhi Agrawal ◽  
Lance Bosart

<p>The United States (U.S.) Great Plains southerly low-level jet (GPLLJ) is a ubiquitous feature of the summertime climatological flow in the central U.S. contributing to a large percentage of mean and extreme summertime rainfall, the generation of vast quantities of U.S. renewable wind energy, and severe weather outbreaks.  Like other LLJs across the globe, the GPLLJ can be 1) vertically coupled to the large-scale cyclone-anticyclone flow pattern associated with an upper-level jet stream or 2) uncoupled to the large-scale flow but sustained in response to various local land-atmosphere coupling mechanisms.  Many studies have focused on the interactions between teleconnection patterns and associated GPLLJ variability, treating the GPLLJ as a singular phenomenon.  Here, we treat the GPLLJ as two phenomena, coupled and uncoupled to the upper-level flow, and explore the multiscale impacts of SST forced and internally generated modes of variability on the GPLLJ.  With mounting evidence for the low-frequency control on higher frequency GPLLJ variability, the current study analyzes the contribution of the Pacific/North America (PNA) pattern on sub-seasonal timescales and ENSO on interannual timescales to changes in the frequency distributions of both coupled and uncoupled GPLLJs.</p><p> </p><p>This analysis utilizes 1) the Coupled ERA 20th Century (CERA-20C; 1901-2010) reanalysis from ECMWF which provides a large sample of teleconnection conditions and their impacts on GPLLJ variability and 2) a recently developed automated technique to differentiate those GPLLJs that are coupled or uncoupled to the upper-level flow.  Many studies have already shown that two distinct synoptic regimes dominate GPLLJ variability, a western U.S. trough and a central U.S. ridge.  This leads to changes in the frequency ratio of coupled and uncoupled GPLLJ events and ultimately in the location and intensity of precipitation across the GP.  Recently, Burrows et al. (2019) showed that during the Dust Bowl period of 1932-1938, the central and northern GP experienced anomalously high (low) uncoupled (coupled) GPLLJ event frequencies that coincided with a multi-year dry period across the entire region.  Understanding the upscale and lower frequency forcing patterns that lead to these distinct synoptic regimes would lead to greater predictability and forecasting skill.  On sub-seasonal timescales, it is shown that the negative phase of the PNA, which is associated with a southerly displaced Pacific jet stream and a western U.S. trough, leads to increases in the frequency of GPLLJs that are coupled to the upper-level flow, increases in Gulf of Mexico moisture flux and a redistribution of GP precipitation.  On interannual timescales, the location of ENSO events, i.e., eastern or central Pacific, is explored to determine the relationship between tropical forced variability and upper-level coupling to the GPLLJ.  In line with recent studies, it is hypothesized that central Pacific ENSO events may lead to increases in coupled GPLLJ events and precipitation, particularly in the southern GP.</p>


Sign in / Sign up

Export Citation Format

Share Document